If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+60x+459=0
a = 1; b = 60; c = +459;
Δ = b2-4ac
Δ = 602-4·1·459
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-42}{2*1}=\frac{-102}{2} =-51 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+42}{2*1}=\frac{-18}{2} =-9 $
| 4x+20=9x+63 | | 6m^2-23m+10= | | 1/5x+3+1/2x=2x-10 | | 80=-2q+q^2 | | 8d-3=4d+17 | | 6m^2-23m+10=0 | | 1-12x=29+8x | | y2+20y=100 | | 3-2v=43+3v | | x+(2-5x)/4=x | | 21x-17=-4 | | 5d-12=8 | | 2x3-3x2+6x+6=0 | | -x²+4x+5=4x | | 3+e=9e-53 | | 4(2x+8)-3x(x+4)=5 | | (2x+1)(3x-5)+(8x+3)(2x+1)=0 | | 2x+2-15x-5=30 | | 4/3=10/3x+1/2 | | 1,414x^2+2,236x+1,732=0 | | s+4s-21=0 | | -13x=33 | | 5-x^2=16 | | 6(x+2)=2(x+3)+4x | | x^2-1,732x-4=0 | | ((x+1)/5)-((3x+1)/2)-3=0 | | 2x^-12x=0 | | (x+5)^2=9 | | 2x+x+(3x+24)=3258 | | 6/9*y=6 | | 16.1,5x+4x=350 | | ((x+1)/5)-((3x+1)/2)=3 |